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1. PASSAGE OF PARTICLES THROUGH MATTER

Revised January 2012 by H. Bichsel (University of Washington), D.E.
Groom (LBNL), and S.R. Klein (LBNL).

1.1. Notation

Table 1.1: Summary of variables used in this section. The
kinematic variables β and γ have their usual meanings.

Symbol Definition Units or Value

α Fine structure constant 1/137.035 999 11(46)

(e2/4πǫ0~c)

M Incident particle mass MeV/c2

E Incident part. energy γMc2 MeV

T Kinetic energy MeV

mec
2 Electron mass × c2 0.510 998 918(44) MeV

re Classical electron radius 2.817 940 325(28) fm

e2/4πǫ0mec
2

NA Avogadro’s number 6.022 1415(10)× 1023 mol−1

ze Charge of incident particle

Z Atomic number of absorber

A Atomic mass of absorber g mol−1

K/A 4πNAr2
emec

2/A 0.307 075 MeV g−1 cm2

for A = 1 g mol−1

I Mean excitation energy eV (Nota bene!)

δ(βγ) Density effect correction to ionization energy loss

~ωp Plasma energy
√

ρ 〈Z/A〉 × 28.816 eV

(
√

4πNer3
e mec

2/α) (ρ in g cm−3)

Ne Electron density (units of re)
−3

wj Weight fraction of the jth element in a compound or mixture

nj ∝ number of jth kind of atoms in a compound or mixture

— 4αr2
eNA/A (716.408 g cm−2)−1 for A = 1 g mol−1

X0 Radiation length g cm−2

Ec Critical energy for electrons MeV

Eµc Critical energy for muons GeV

Es Scale energy
√

4π/α mec
2 21.2052 MeV

RM Molière radius g cm−2

1.2. Electronic energy loss by heavy particles [1–34]

1.2.1. Moments and cross sections:

The electronic interactions of fast charged particles with speed
v = βc occur in single collisions with energy losses E [1], leading to
ionization, atomic, or collective excitation. Most frequently the energy
losses are small (for 90% of all collisions the energy losses are less than
100 eV). In thin absorbers few collisions will take place and the total
energy loss will show a large variance [1]; also see Sec. 1.2.7 below.
For particles with charge ze more massive than electrons (“heavy”
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2 1. Passage of particles through matter

particles), scattering from free electrons is adequately described by

the Rutherford differential cross section [2], * †

dσR (E; β)

dE
=

2πr2
emec

2z2

β2

(

1 − β2E/Tmax

)

E2
, (1.1)

where Tmax is the maximum energy transfer possible in a single
collision. But in matter electrons are not free. E must be finite and
depends on atomic and bulk structure. For electrons bound in atoms
Bethe [3] used “Born Theorie” to obtain the differential cross section

dσB (E; β)

dE
=

dσR (E, β)

dE
B (E) . (1.2)

Examples of B(E) and dσB/dE can be seen in Figs. 5 and 6 of Ref. 1.

Bethe’s theory extends only to some energy above which atomic
effects were not important. The free-electron cross section (Eq. (1.1))
can be used to extend the cross section to Tmax. At high energies σB
is further modified by polarization of the medium, and this “density
effect,” discussed in Sec. 1.2.4, must also be included. Less important
corrections are discussed below.

The mean number of collisions with energy loss between E and
E + dE occurring in a distance δx is Neδx (dσ/dE)dE, where
dσ(E; β)/dE contains all contributions. It is convenient to define the
moments

Mj (β) = Ne δx

∫

Ej dσ (E; β)

dE
dE , (1.3)

so that M0 is the mean number of collisions in δx, M1 is the mean
energy loss in δx, M2 − M2

1 is the variance, etc. The number of
collisions is Poisson-distributed with mean M0. Ne is either measured
in electrons/g (Ne = NAZ/A) or electrons/cm3 (Ne = NA ρZ/A).
The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no
density dependence.

* For spin 0 particles. The β dependence in the parentheses is dif-
ferent for spin 1/2 and spin 1 particles, but it is not important except
at energies far above atomic binding energies.

† In high-energy physics E normally means total energy, T + mc2.
In stopping power discussions, E means kinetic energy, and we follow
that convention (with some inconsistency).
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1. Passage of particles through matter 3

Fig. 1.1: Stopping power (= 〈−dE/dx〉) for positive muons in copper as a function of
βγ = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic
energy). Solid curves indicate the total stopping power. Data below the break at βγ ≈ 0.1
are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical bands
indicate boundaries between different approximations discussed in the text. The short
dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping power
on projectile charge at very low energies [6].

1.2.2. Stopping power at intermediate energies:

The mean rate of energy loss by moderately relativistic charged
heavy particles, M1/δx, is well-described by the “Bethe” equation,

−
〈

dE

dx

〉

= Kz2Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ (βγ)

2

]

. (1.4)

It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000
for intermediate-Z materials with an accuracy of a few %. With
the symbol definitions and values given in Table 1.1, the units are
MeV g−1cm2. At the lower limit the projectile velocity becomes
comparable to atomic electron “velocities” (Sec. 1.2.3), and at the
upper limit radiative effects begin to be important (Sec. 1.6). Both
limits are Z dependent. Here Tmax is the maximum kinetic energy
which can be imparted to a free electron in a single collision, and the
other variables are defined in Table 1.1. A minor dependence on M at
the highest energies is introduced through Tmax, but for all practical
purposes 〈dE/dx〉 in a given material is a function of β alone.

For heavy projectiles, like ions, additional terms are required to
account for higher-order photon coupling to the target, and to account
for the finite size of the target radius. These can change dE/dx by
a factor of two or more for the heaviest nuclei in certain kinematic
regimes [7].

Few concepts in high-energy physics are as misused as 〈dE/dx〉.
The main problem is that the mean is weighted by very rare events
with large single-collision energy deposits. Even with samples of
hundreds of events a dependable value for the mean energy loss cannot
be obtained. Far better and more easily measured is the most probable
energy loss, discussed in Sec. 1.2.7. The most probable energy loss in a
detector is considerably below the mean given by the Bethe equation.

In a TPC (Sec. 31.6.5), the mean of 50%–70% of the samples with
the smallest signals is often used as an estimator.

Although it must be used with cautions and caveats, 〈dE/dx〉
as described in Eq. (1.4) still forms the basis of much of our
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4 1. Passage of particles through matter

understanding of energy loss by charged particles. Extensive tables
are available[5,4, pdg.lbl.gov/AtomicNuclearProperties/].
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Figure 1.2: Stopping power at minimum ionization for the
chemical elements. The straight line is fitted for Z > 6. A
simple functional dependence on Z is not to be expected, since
〈−dE/dx〉 also depends on other variables.

The function as computed for muons on copper is shown as the
“Bethe” region of Fig. 1.1. Mean energy loss behavior below this
region is discussed in Sec. 1.2.3, and the radiative effects at high
energy are discussed in Sec. 1.6. Only in the Bethe region is it
a function of β alone; the mass dependence is more complicated
elsewhere. The stopping power in several other materials is shown in
Fig. 27.3. Except in hydrogen, particles with the same velocity have
similar rates of energy loss in different materials, although there is
a slow decrease in the rate of energy loss with increasing Z. The
qualitative behavior difference at high energies between a gas (He in
the figure) and the other materials shown in the figure is due to the
density-effect correction, δ(βγ), discussed in Sec. 1.2.4. The stopping
power functions are characterized by broad minima whose position
drops from βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of
minimum ionization as a function of atomic number are shown in
Fig. 1.2.

In practical cases, most relativistic particles (e.g., cosmic-ray
muons) have mean energy loss rates close to the minimum; they are
“minimum-ionizing particles,” or mip’s.

Eq. (1.4) may be integrated to find the total (or partial) “continuous
slowing-down approximation” (CSDA) range R for a particle which
loses energy only through ionization and atomic excitation. Since
dE/dx depends only on β, R/M is a function of E/M or pc/M .
In practice, range is a useful concept only for low-energy hadrons
(R <∼ λI , where λI is the nuclear interaction length), and for muons
below a few hundred GeV (above which radiative effects dominate).
R/M as a function of βγ = p/Mc is shown for a variety of materials
in Fig. 1.4.

The mass scaling of dE/dx and range is valid for the electronic
losses described by the Bethe equation, but not for radiative losses,
relevant only for muons and pions.
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Figure 1.3: Mean energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead.
Radiative effects, relevant for muons and pions, are not included.
These become significant for muons in iron for βγ >∼ 1000, and
at lower momenta in higher-Z absorbers. See Fig. 1.22.

For a particle with mass M and momentum Mβγc, Tmax is given
by

Tmax =
2mec

2 β2γ2

1 + 2γme/M + (me/M)2
. (1.5)

In older references [2,8] the “low-energy” approximation Tmax =
2mec

2 β2γ2, valid for 2γme/M ≪ 1, is often implicit. For a pion
in copper, the error thus introduced into dE/dx is greater than 6%
at 100 GeV. Structure function corrections to Eq. (1.5) have been
considered in the case of incident pions by J.D. Jackson [9], with
the conculsion that the effects are negligible below energies in which
radiative effects dominate (see Sec. 1.6).

Estimates of the mean excitation energy based on experimental
stopping-power measurements for protons, deuterons, and alpha
particles are given in ICRU 37 [11].

1.2.4. Density effect: As the particle energy increases, its electric
field flattens and extends, so that the distant-collision contribution to
Eq. (1.4) increases as ln βγ. However, real media become polarized,
limiting the field extension and effectively truncating this part of the
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6 1. Passage of particles through matter
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Figure 1.4: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For
example: For a K+ whose momentum is 700 MeV/c, βγ = 1.42.
For lead we read R/M ≈ 396, and so the range is 195 g cm−2.

logarithmic rise [2–8,19–21]. At very high energies,

δ/2 → ln
(

~ωp/I
)

+ lnβγ − 1/2 , (1.7)

where δ(βγ)/2 is the density effect correction introduced in Eq. (1.4)
and ~ωp is the plasma energy defined in Table 1.1. A comparison with

Eq. (1.4) shows that |dE/dx| then grows as ln βγ rather than lnβ2γ2,
and that the mean excitation energy I is replaced by the plasma
energy ~ωp. Since the plasma frequency scales as the square root of
the electron density, the correction is much larger for a liquid or solid
than for a gas, as is illustrated by the examples in Fig. 1.3.

The remaining relativistic rise comes from the β2γ2 growth of
Tmax, which in turn is due to (rare) large energy transfers to a few
electrons. When these events are excluded, the energy deposit in an
absorbing layer approaches a constant value, the Fermi plateau (see
Sec. 1.2.6 below). At extreme energies (e.g., > 332 GeV for muons
in iron, and at a considerably higher energy for protons in iron),
radiative effects are more important than ionization losses. These are
especially relevant for high-energy muons, as discussed in Sec. 1.6.
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1. Passage of particles through matter 7

1.2.5. Energetic knock-on electrons (δ rays): The distribution
of secondary electrons with kinetic energies T ≫ I is [2]

d2N

dTdx
=

1

2
Kz2Z

A

1

β2

F (T )

T 2
(1.8)

for I ≪ T ≤ Tmax, where Tmax is given by Eq. (1.5). Here β
is the velocity of the primary particle. The factor F is spin-
dependent, but is about unity for T ≪ Tmax. For spin-0 particles
F (T ) = (1 − β2T/Tmax); forms for spins 1/2 and 1 are also given
by Rossi [2]( Sec. 2.3, Eqns. 7 and 8). For incident electrons, the
indistinguishability of projectile and target means that the range of
T extends only to half the kinetic energy of the incident particle.
Additional formulae are given in Ref. 23. Equation (1.8) is inaccurate
for T close to I [24].

δ rays of even modest energy are rare. For a β ≈ 1 particle, for
example, on average only one collision with Te > 10 keV will occur
along a path length of 90 cm of Ar gas [1].

A δ ray with kinetic energy Te and corresponding momentum pe is
produced at an angle θ given by

cos θ = (Te/pe) (pmax/Tmax) , (1.9)

where pmax is the momentum of an electron with the maximum
possible energy transfer Tmax.
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Figure 1.6: Bethe dE/dx, two examples of restricted energy
loss, and the Landau most probable energy per unit thickness
in silicon. The change of ∆p/x with thickness x illustrates
its a lnx + b dependence. Minimum ionization (dE/dx|min) is
1.664 MeV g−1 cm2. Radiative losses are excluded. The incident
particles are muons.

1.2.6. Restricted energy loss rates for relativistic ionizing
particles: Further insight can be obtained by examining the mean
energy deposit by an ionizing particle when energy transfers are
restricted to T ≤ Tcut ≤ Tmax. The restricted energy loss rate is

−dE

dx

∣

∣

∣

∣

T<Tcut

= Kz2 Z

A

1

β2

[

1

2
ln

2mec
2β2γ2Tcut

I2

−β2

2

(

1 +
Tcut

Tmax

)

− δ

2

]

. (1.10)
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8 1. Passage of particles through matter

This form approaches the normal Bethe function (Eq. (1.4)) as
Tcut → Tmax. It can be verified that the difference between Eq. (1.4)

and Eq. (1.10) is equal to
∫ Tmax
Tcut

T (d2N/dTdx)dT , where d2N/dTdx

is given by Eq. (1.8).

Since Tcut replaces Tmax in the argument of the logarithmic
term of Eq. (1.4), the βγ term producing the relativistic rise
in the close-collision part of dE/dx is replaced by a constant, and
|dE/dx|T<Tcut

approaches the constant “Fermi plateau.” (The density
effect correction δ eliminates the explicit βγ dependence produced
by the distant-collision contribution.) This behavior is illustrated in
Fig. 1.6, where restricted loss rates for two examples of Tcut are shown
in comparison with the full Bethe dE/dx and the Landau-Vavilov
most probable energy loss (to be discussed in Sec. 1.2.7 below).

1.2.7. Fluctuations in energy loss: For detectors of moderate
thickness x (e.g. scintillators or LAr cells),* the energy loss probability
distribution f(∆; βγ, x) is adequately described by the highly-skewed
Landau (or Landau-Vavilov) distribution [25,26]. The most probable
energy loss is [27]

∆p = ξ

[

ln
2mc2β2γ2

I
+ ln

ξ

I
+ j − β2 − δ (βγ)

]

, (1.11)

where ξ = (K/2) 〈Z/A〉 (x/β2) MeV for a detector with a thickness

x in g cm−2, and j = 0.200 [27]. † While dE/dx is independent of
thickness, ∆p/x scales as a lnx + b. The density correction δ(βγ) was
not included in Landau’s or Vavilov’s work, but it was later included
by Bichsel [27]. The high-energy behavior of δ(βγ) (Eq. (1.7)) is such
that

∆p −→
βγ>∼100

ξ

[

ln
2mc2ξ
(

~ωp
)2

+ j

]

. (1.12)

Thus the Landau-Vavilov most probable energy loss, like the restricted
energy loss, reaches a Fermi plateau. The Bethe dE/dx and Landau-
Vavilov-Bichsel ∆p/x in silicon are shown as a function of muon
energy in Fig. 1.6. The energy deposit in the 1600 µm case is roughly
the same as in a 3 mm thick plastic scintillator.

The distribution function for the energy deposit by a 10 GeV
muon going through a detector of about this thickness is shown in
Fig. 1.7. In this case the most probable energy loss is 62% of the mean
(M1(〈∆〉)/M1(∞)). Folding in experimental resolution displaces the
peak of the distribution, usually toward a higher value. 90% of the
collisions (M1(〈∆〉)/M1(∞)) contribute to energy deposits below the
mean. It is the very rare high-energy-transfer collisions, extending
to Tmax at several GeV, that drives the mean into the tail of the
distribution. The mean of the energy loss given by the Bethe equation,
Eq. (1.4), is thus ill-defined experimentally and is not useful for
describing energy loss by single particles.* It rises as ln βγ because
Tmax increases as β2γ2. The large single-collision energy transfers
that increasingly extend the long tail are rare, making the mean of an

* G <∼ 0.05–0.1, where G is given by Rossi [Ref. 2, Eq. 2.7.10]. It is
Vavilov’s κ [26].

† Rossi [2], Talman [28], and others give somewhat different values
for j. The most probable loss is not sensitive to its value.

* It does find application in dosimetry, where only bulk deposit is
relevant.
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Figure 1.7: Electronic energy deposit distribution for a 10 GeV
muon traversing 1.7 mm of silicon, the stopping power equivalent
of about 0.3 cm of PVC scintillator [1,13,29]. The Landau-
Vavilov function (dot-dashed) uses a Rutherford cross section
without atomic binding corrections but with a kinetic energy
transfer limit of Tmax. The solid curve was calculated using
Bethe-Fano theory. M0(∆) and M1(∆) are the cumulative 0th
moment (mean number of collisions) and 1st moment (mean
energy loss) in crossing the silicon. (See Sec. 1.2.1. The fwhm
of the Landau-Vavilov function is about 4ξ for detectors of
moderate thickness. ∆p is the most probable energy loss, and
〈∆〉 divided by the thickness is the Bethe 〈dE/dx〉.

experimental distribution consisting of a few hundred events subject
to large fluctuations and sensitive to cuts. The most probable energy
loss should be used.†

The Landau distribution fails to describe energy loss in thin
absorbers such as gas TPC cells [1] and Si detectors [27], as
shown clearly in Fig. 1 of Ref. 1 for an argon-filled TPC cell. Also
see Talman [28]. While ∆p/x may be calculated adequately with
Eq. (1.11), the distributions are significantly wider than the Landau
width w = 4ξ [Ref. 27, Fig. 15]. Examples for 500 MeV pions incident
on thin silicon detectors are shown in Fig. 1.8. For very thick absorbers
the distribution is less skewed but never approaches a Gaussian.

The most probable energy loss, scaled to the mean loss at minimum
ionization, is shown in Fig. 1.9 for several silicon detector thicknesses.

1.2.8. Energy loss in mixtures and compounds: A mixture or
compound can be thought of as made up of thin layers of pure
elements in the right proportion (Bragg additivity). In this case,

dE

dx
=

∑

wj
dE

dx

∣

∣

∣

∣

j
, (1.13)

where dE/dx|j is the mean rate of energy loss (in MeV g cm−2) in
the jth element. Eq. (1.4) can be inserted into Eq. (1.13) to find ex-
pressions for 〈Z/A〉, 〈I 〉, and 〈δ〉; for example, 〈Z/A〉 =

∑

wjZj/Aj =

† An alternative approach is taken in TPC analysis, where some
fraction of the highest energy deposit signals along a track, e.g. 20%,
are discarded before taking the average.
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∑

njZj/
∑

njAj . However, 〈I 〉 as defined this way is an underesti-
mate, because in a compound electrons are more tightly bound than
in the free elements, and 〈δ〉 as calculated this way has little relevance,
because it is the electron density that matters. If possible, one uses
the tables given in Refs. 21 and 30, or the recipes given in Ref. 22
(repeated in Ref. 5), which include effective excitation energies and
interpolation coefficients for calculating the density effect correction.

1.3. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many
small-angle scatters. Most of this deflection is due to Coulomb
scattering from nuclei, and hence the effect is called multiple Coulomb
scattering. (However, for hadronic projectiles, the strong interactions
also contribute to multiple scattering.) The Coulomb scattering
distribution is well represented by the theory of Molière [35]. It is
roughly Gaussian for small deflection angles, but at larger angles
(greater than a few θ0, defined below) it behaves like Rutherford
scattering, with larger tails than does a Gaussian distribution.

If we define

θ0 = θ rms
plane =

1√
2

θrms
space . (1.14)

then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
a width given by [36,37]

θ0 =
13.6 MeV

βcp
z

√

x/X0

[

1 + 0.038 ln (x/X0)
]

. (1.15)

Here p, βc, and z are the momentum, velocity, and charge number
of the incident particle, and x/X0 is the thickness of the scattering
medium in radiation lengths (defined below). This value of θ0 is from
a fit to Molière distribution for singly charged particles with β = 1 for
all Z, and is accurate to 11% or better for 10−3 < x/X0 < 100.

Eq. (1.15) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Molière
distribution, it is incorrect to add the individual θ0 contributions in
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1. Passage of particles through matter 11

quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (1.15) once, after finding x and X0 for the
combined scatterer.

1.4. Photon and electron interactions in matter

1.4.1. Radiation length: High-energy electrons predominantly
lose energy in matter by bremsstrahlung, and high-energy photons by
e+e− pair production. The characteristic amount of matter traversed
for these related interactions is called the radiation length X0, usually
measured in g cm−2. It is both (a) the mean distance over which a
high-energy electron loses all but 1/e of its energy by bremsstrahlung,

and (b) 7
9 of the mean free path for pair production by a high-energy

photon [39]. It is also the appropriate scale length for describing
high-energy electromagnetic cascades. X0 has been calculated and
tabulated by Y.S. Tsai [40]:

1

X0
= 4αr2

e
NA

A

{

Z2
[

Lrad − f (Z)
]

+ Z L′
rad

}

. (1.23)

For A = 1 g mol−1, 4αr2
eNA/A = (716.408 g cm−2)−1. Lrad and

L′
rad are given in Table 1.2. The function f(Z) is an infinite sum, but

for elements up to uranium can be represented to 4-place accuracy by

f (Z) = a2

[

(

1 + a2
)−1

+ 0.20206

−0.0369 a2 + 0.0083 a4 − 0.002 a6

]

, (1.24)

where a = αZ [41].

Table 1.2: Tsai’s Lrad and L′
rad, for use in calculating the

radiation length in an element using Eq. (1.23).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

The radiation length in a mixture or compound may be approxi-
mated by

1/X0 =
∑

wj/Xj , (1.25)

where wj and Xj are the fraction by weight and the radiation length
for the jth element.

1.4.2. Energy loss by electrons: At low energies electrons and
positrons primarily lose energy by ionization, although other processes
(Møller scattering, Bhabha scattering, e+ annihilation) contribute, as
shown in Fig. 1.12. While ionization loss rates rise logarithmically
with energy, bremsstrahlung losses rise nearly linearly (fractional loss
is nearly independent of energy), and dominates above a few tens of
MeV in most materials (See Sec. 1.4.3 below.)

Ionization loss by electrons and positrons differ somewhat, and both
differ from loss by heavy particles because of the kinematics, spin, and
the identity of the incident electron with the electrons which it ionizes.
Complete discussions and tables can be found in Refs. 10, 11, and 30.
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12 1. Passage of particles through matter

Figure 1.12: Fractional energy loss per radiation length in
lead as a function of electron or positron energy. Electron
(positron) scattering is considered as ionization when the energy
loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel
and Crawford, Electron-Photon Shower Distribution Function
Tables for Lead, Copper, and Air Absorbers, Pergamon Press,
1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2, but
we have modified the figures to reflect the value given in the
Table of Atomic and Nuclear Properties of Materials (X0(Pb) =
6.37 g/cm2).

At very high energies and except at the high-energy tip of the
bremsstrahlung spectrum, the cross section can be approximated in
the “complete screening case” as [40]

dσ/dk = (1/k) 4αr2
e

{ (

4
3 − 4

3y + y2
)

[

Z2 (Lrad − f (Z)) + Z L′
rad

]

+ 1
9 (1 − y)

(

Z2 + Z
) }

,
(1.27)

where y = k/E is the fraction of the electron’s energy transfered to
the radiated photon. At small y (the “infrared limit”) the term on the
second line ranges from 1.7% (low Z) to 2.5% (high Z) of the total.
If it is ignored and the first line simplified with the definition of X0

given in Eq. (1.23), we have
dσ

dk
=

A

X0NAk

(

4
3 − 4

3y + y2
)

. (1.28)

This formula is accurate except in near y = 1, where screening may
become incomplete, and near y = 0, where the infrared divergence
is removed by the interference of bremsstrahlung amplitudes from
nearby scattering centers (the LPM effect) [42,43] and dielectric
suppression [44,45]. These and other suppression effects in bulk
media are discussed in Sec. 1.4.5.

Except at these extremes, and still in the complete-screening
approximation, the number of photons with energies between kmin

and kmax emitted by an electron travelling a distance d ≪ X0 is

Nγ =
d

X0

[

4

3
ln

(

kmax

kmin

)

− 4 (kmax − kmin)

3E
+

k2
max − k2

min

2E2

]

. (1.29)
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1.4.3. Critical energy: An electron loses energy by bremsstrahlung
at a rate nearly proportional to its energy, while the ionization loss
rate varies only logarithmically with the electron energy. The critical
energy Ec is sometimes defined as the energy at which the two
loss rates are equal [47]. Among alternate definitions is that of
Rossi [2], who defines the critical energy as the energy at which
the ionization loss per radiation length is equal to the electron
energy. Equivalently, it is the same as the first definition with the
approximation |dE/dx|brems ≈ E/X0. This form has been found
to describe transverse electromagnetic shower development more
accurately (see below).

The accuracy of approximate forms for Ec has been limited by the
failure to distinguish between gases and solid or liquids, where there is
a substantial difference in ionization at the relevant energy because of
the density effect. Separate fits to Ec(Z), using the Rossi definition,
have been made with functions of the form a/(Z + b)α, but α was
found to be essentially unity. Since Ec also depends on A, I, and
other factors, such forms are at best approximate.

Values of Ec for both electrons and positrons in more than 300
materials can be found at pdg.lbl.gov/AtomicNuclearProperties.

1.4.4. Energy loss by photons: Contributions to the photon cross
section in a light element (carbon) and a heavy element (lead) are
shown in Fig. 1.16. At low energies it is seen that the photoelectric
effect dominates, although Compton scattering, Rayleigh scattering,
and photonuclear absorption also contribute. The photoelectric cross
section is characterized by discontinuities (absorption edges) as
thresholds for photoionization of various atomic levels are reached.
Photon attenuation lengths for a variety of elements are shown in
Fig. 30.16, and data for 30 eV< k <100 GeV for all elements is
available from the web pages given in the caption. Here k is the
photon energy.
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Figure 1.18: The normalized pair production cross section
dσLPM/dy, versus fractional electron energy x = E/k.

The increasing domination of pair production as the energy increases
is shown in Fig. 1.17 of the full Review. Using approximations similar
to those used to obtain Eq. (1.28), Tsai’s formula for the differential
cross section [40] reduces to

dσ

dx
=

A

X0NA

[

1 − 4
3x (1 − x)

]

(1.30)
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14 1. Passage of particles through matter

in the complete-screening limit valid at high energies. Here x = E/k
is the fractional energy transfer to the pair-produced electron (or
positron), and k is the incident photon energy. The cross section is
very closely related to that for bremsstrahlung, since the Feynman
diagrams are variants of one another. The cross section is of necessity
symmetric between x and 1 − x, as can be seen by the solid curve in
Fig. 1.18 of the full Review. See the review by Motz, Olsen, & Koch
for a more detailed treatment [50].

Eq. (1.30) may be integrated to find the high-energy limit for the
total e+e− pair-production cross section:

σ = 7
9 (A/X0NA) . (1.31)

Equation Eq. (1.31) is accurate to within a few percent down to
energies as low as 1 GeV, particularly for high-Z materials.

1.4.5. Bremsstrahlung and pair production at very high energies:
At ultrahigh energies, Eqns. 1.27–1.31 will fail because of quantum
mechanical interference between amplitudes from different scattering
centers. Since the longitudinal momentum transfer to a given center is
small (∝ k/E(E − k), in the case of bremsstrahlung), the interaction
is spread over a comparatively long distance called the formation
length (∝ E(E − k)/k) via the uncertainty principle. In alternate
language, the formation length is the distance over which the highly
relativistic electron and the photon “split apart.” The interference
is usually destructive. Calculations of the “Landau-Pomeranchuk-
Migdal” (LPM) effect may be made semi-classically based on the
average multiple scattering, or more rigorously using a quantum
transport approach [42,43].

In amorphous media, bremsstrahlung is suppressed if the photon
energy k is less than E2/(E + ELPM ) [43], where*

ELPM =

(

mec
2
)2

αX0

4π~cρ
= (7.7 TeV/cm) × X0

ρ
. (1.32)

Since physical distances are involved, X0/ρ, in cm, appears. The
energy-weighted bremsstrahlung spectrum for lead, k dσLPM/dk, is
shown in Fig. 1.13 of the full Review. With appropriate scaling by
X0/ρ, other materials behave similarly.

For photons, pair production is reduced for E(k − E) > k ELPM .
The pair-production cross sections for different photon energies are
shown in Fig. 1.18 of the full Review.

If k ≪ E, several additional mechanisms can also produce
suppression. When the formation length is long, even weak factors
can perturb the interaction. For example, the emitted photon can
coherently forward scatter off of the electrons in the media. Because of
this, for k < ωpE/me ∼ 10−4, bremsstrahlung is suppressed by a factor

(kme/ωpE)2 [45]. Magnetic fields can also suppress bremsstrahlung.
In crystalline media, the situation is more complicated, with coherent
enhancement or suppression

1.4.6. Photonuclear and electronuclear interactions at still
higher energies: At still higher photon and electron energies,
where the bremsstrahlung and pair production cross-sections are
heavily suppressed by the LPM effect, photonuclear and electronuclear
interactions predominate over electromagnetic interactions.

* This definition differs from that of Ref. 51 by a factor of two.
ELPM scales as the 4th power of the mass of the incident particle, so
that ELPM = (1.4 × 1010 TeV/cm) × X0/ρ for a muon.
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At photon energies above about 1020 eV, for example, photons
usually interact hadronically. The exact cross-over energy depends
on the model used for the photonuclear interactions. At still higher
energies (>∼ 1023 eV), photonuclear interactions can become coherent,
with the photon interaction spread over multiple nuclei. Essentially,
the photon coherently converts to a ρ0, in a process that is somewhat
similar to kaon regeneration [53]. These processes are illustrated in
Fig. 30.19.

Similar processes occur for electrons. As electron energies increase
and the LPM effect suppresses bremsstrahlung, electronuclear
interactions become more important. At energies above 1021eV, these
electronuclear interactions dominate electron energy loss [53].

1.5. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick
absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t = x/X0 , y = E/Ec , (1.33)

so that distance is measured in units of radiation length and energy in
units of critical energy.

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma
distribution [57]:

dE

dt
= E0 b

(bt)a−1 e−bt

Γ (a)
(1.34)

The maximum tmax occurs at (a − 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (1.34) with

tmax = (a − 1) /b = 1.0 ×
(

ln y + Cj
)

, j = e, γ , (1.35)

where Ce = −0.5 for electron-induced cascades and Cγ = +0.5 for
photon-induced cascades. To use Eq. (1.34), one finds (a − 1)/b from
Eq. (1.35) and Eq. (1.33), then finds a either by assuming b ≈ 0.5
or by finding a more accurate value from Fig. 1.20. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [2] but with Ce = −1.0 and Cγ = −0.5;
we regard this as superseded by the EGS4 result.

The “shower length” Xs = X0/b is less conveniently parameterized,
since b depends upon both Z and incident energy, as shown in
Fig. 1.20. As a corollary of this Z dependence, the number of electrons
crossing a plane near shower maximum is underestimated using Rossi’s
approximation for carbon and seriously overestimated for uranium.
Essentially the same b values are obtained for incident electrons and
photons. For many purposes it is sufficient to take b ≈ 0.5.

The length of showers initiated by ultra-high energy photons and
electrons is somewhat greater than at lower energies since the first
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16 1. Passage of particles through matter

or first few interaction lengths are increased via the mechanisms
discussed above.

The gamma function distribution is very flat near the origin,
while the EGS4 cascade (or a real cascade) increases more rapidly.
As a result Eq. (1.34) fails badly for about the first two radiation
lengths; it was necessary to exclude this region in making fits.
Because fluctuations are important, Eq. (1.34) should be used only in
applications where average behavior is adequate.

The transverse development of electromagnetic showers in different
materials scales fairly accurately with the Molière radius RM , given
by [59,60]

RM = X0 Es/Ec , (1.36)

where Es ≈ 21 MeV (Table 1.1), and the Rossi definition of Ec is
used.

Measurements of the lateral distribution in electromagnetic
cascades are shown in Refs. 59 and 60. On the average, only 10%
of the energy lies outside the cylinder with radius RM . About
99% is contained inside of 3.5RM , but at this radius and beyond
composition effects become important and the scaling with RM fails.
The distributions are characterized by a narrow core, and broaden as
the shower develops. They are often represented as the sum of two
Gaussians, and Grindhammer [58] describes them with the function

f (r) =
2r R2

(r2 + R2)2
, (1.38)

where R is a phenomenological function of x/X0 and lnE.

At high enough energies, the LPM effect (Sec. 1.4.5) reduces the
cross sections for bremsstrahlung and pair production, and hence can
cause significant elongation of electromagnetic cascades [43].

1.6. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more
important than ionization for all charged particles. For muons and
pions in materials such as iron, this “critical energy” occurs at several
hundred GeV. (There is no simple scaling with particle mass, but
for protons the “critical energy” is much, much higher.) Radiative
effects dominate the energy loss of energetic muons found in cosmic
rays or produced at the newest accelerators. These processes are
characterized by small cross sections, hard spectra, large energy
fluctuations, and the associated generation of electromagnetic and (in
the case of photonuclear interactions) hadronic showers [61–69]. As
a consequence, at these energies the treatment of energy loss as a
uniform and continuous process is for many purposes inadequate.

It is convenient to write the average rate of muon energy loss
as [70]

−dE/dx = a (E) + b (E) E . (1.39)

Here a(E) is the ionization energy loss given by Eq. (1.4), and
b(E) is the sum of e+e− pair production, bremsstrahlung, and
photonuclear contributions. To the approximation that these slowly-
varying functions are constant, the mean range x0 of a muon with
initial energy E0 is given by

x0 ≈ (1/b) ln
(

1 + E0/Eµc
)

, (1.40)

where Eµc = a/b.

The “muon critical energy” Eµc can be defined more exactly as the
energy at which radiative and ionization losses are equal, and can be
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found by solving Eµc = a(Eµc)/b(Eµc). This definition corresponds
to the solid-line intersection in Fig. 1.14 of the full Review, and is
different from the Rossi definition we used for electrons. It serves the
same function: below Eµc ionization losses dominate, and above Eµc
radiative effects dominate. The dependence of Eµc on atomic number
Z is shown in Fig. 1.23 in the full Review, but to 3–4% accuracy

Ec =
4700 MeV

(Z + 1.47)0.838 (solids, liquids) , =
7980 MeV

(Z + 2.03)−0.879 (gases) .

The radiative cross sections are expressed as functions of the
fractional energy loss ν. The bremsstrahlung cross section goes
roughly as 1/ν over most of the range, while for the pair production
case the distribution goes as ν−3 to ν−2 [71]. “Hard” losses are
therefore more probable in bremsstrahlung, and in fact energy losses
due to pair production may very nearly be treated as continuous. The
simulated [69] momentum distribution of an incident 1 TeV/c muon
beam after it crosses 3 m of iron is shown in Fig. 1.24 of the full
Review. The hard bremsstrahlung photons and hadronic debris from
photonuclear interactions induce cascades which can obscure muon
tracks in detector planes and reduce tracking efficiency [73].

1.7. Cherenkov and transition radiation [74,75,34]

A charged particle radiates if its velocity is greater than the
local phase velocity of light (Cherenkov radiation) or if it crosses
suddenly from one medium to another with different optical properties
(transition radiation). Neither process is important for energy loss,
but both are used in high-energy and cosmic-ray physics detectors.

1.7.1. Optical Cherenkov radiation: The angle θc of Cherenkov
radiation, relative to the particle’s direction, for a particle with
velocity βc in a medium with index of refraction n is

cos θc = (1/nβ)

or tan θc =
√

β2n2 − 1

≈
√

2 (1 − 1/nβ) for small θc, e.g. in gases. (1.41)

The threshold velocity βt is 1/n, and γt = 1/(1 − β2
t )1/2. Therefore,

βtγt = 1/(2δ + δ2)1/2, where δ = n − 1. Values of δ for various
commonly used gases are given as a function of pressure and
wavelength in Ref. 76. For values at atmospheric pressure, see
Table 6.1. Data for other commonly used materials are given in
Ref. 77.

Practical Cherenkov radiator materials are dispersive. Let ω be the
photon’s frequency, and let k = 2π/λ be its wavenumber. The photons
propage at the group velocity vg = dω/dk = c/[n(ω) + ω(dn/dω)]. In
a non-dispersive medium, this simplies to vg = c/n.

In his classical paper, Tamm [78] showed that for dispersive media
the radiation is concentrated in a thin conical shell whose vertex is at
the moving charge, and whose opening half-angle η is given by

cot η =

[

d

dω
(ω tan θc)

]

ω0

=

[

tan θc + β2ω n (ω)
dn

dω
cot θc

]

ω0

, (1.42)

where ω0 is the central value of the small frequency range under
consideration. (See Fig. 27.24.) This cone has a opening half-angle η,
and, unless the medium is non-dispersive (dn/dω = 0), θc + η 6= 900.
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The Cherenkov wavefront ‘sideslips’ along with the particle [79].
This effect may have timing implications for ring imaging Cherenkov
counters [80], but it is probably unimportant for most applications.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

d2N

dEdx
=

αz2

~c
sin2 θc =

α2z2

re mec2

(

1 − 1

β2n2 (E)

)

≈ 370 sin2 θc (E) eV−1cm−1 (z = 1) , (1.43)

or, equivalently,

d2N

dxdλ
=

2παz2

λ2

(

1 − 1

β2n2 (λ)

)

. (1.44)

The index of refraction n is a function of photon energy E = ~ω,
as is the sensitivity of the transducer used to detect the light. For
practical use, Eq. (1.43) must be multiplied by the the transducer
response function and integrated over the region for which β n(ω) > 1.
Further details are given in the discussion of Cherenkov detectors in
the Particle Detectors section (Sec. 31 of this Review).

When two particles are close together (lateral separation <∼ 1
wavelength), the electromagnetic fields from the particles may
add coherently, affecting the Cherenkov radiation. Because of their
opposite charges, the radiation from an e+e− pair at close separation
is suppressed compared to two independent leptons [81].

1.7.2. Coherent radio Cherenkov radiation:

Coherent Cherenkov radiation is produced by many charged
particles with a non-zero net charge moving through matter on an
approximately common “wavefront”—for example, the electrons and
positrons in a high-energy electromagnetic cascade. The signals can
be visible above backgrounds for shower energies as low as 1017

eV; see Sec. 32.3.2 for more details. The phenomenon is called the
Askaryan effect [82]. Near the end of a shower, when typical particle
energies are below Ec (but still relativistic), a charge imbalance
develops. The photons can Compton-scatter atomic electrons, and
positrons can annihilate with atomic electrons to contribute even
more photons which can in turn Compton scatter. These processes
result in a roughly 20% excess of electrons over positrons in a shower.
The net negative charge leads to coherent radio Cherenkov emission.
The radiation includes a component from the decellerating charges
(as in bremsstrahlung). Because the emission is coherent, the electric
field strength is proportional to the shower energy, and the signal
power increases as its square. The electric field strength also increases
linearly with frequency, up to a maximum frequency determined by
the lateral spread of the shower. This cutoff occurs at about 1 GHz in
ice, and scales inversely with the Moliere radius. At low frequencies,
the radiation is roughly isotropic, but, as the frequency rises toward
the cutoff frequency, the radiation becomes increasingly peaked
around the Cherenkov angle. The radiation is linearly polarized in
the plane containing the shower axis and the photon direction. A
measurement of the signal polarization can be used to help determine
the shower direction. The characteristics of this radiation have been
nicely demonstrated in a series of experiments at SLAC [83]. A
detailed discussion of the radiation can be found in Ref. 84.

July 31, 2012 18:11



1. Passage of particles through matter 19

1.7.3. Transition radiation: The energy radiated when a particle
with charge ze crosses the boundary between vacuum and a medium
with plasma frequency ωp is

I = αz2γ~ωp/3 , (1.45)

where

~ωp =
√

4πNer3
e mec

2/α =

√

ρ (in g/cm3) 〈Z/A〉 × 28.81 eV .

(1.46)

For styrene and similar materials, ~ωp ≈ 20 eV; for air it is 0.7 eV.

The number spectrum dNγ/d(~ω diverges logarithmically at low
energies and decreases rapidly for ~ω/γ~ωp > 1. About half the energy
is emitted in the range 0.1 ≤ ~ω/γ~ωp ≤ 1. Inevitable absorption in a

practical detector removes the divergence. For a particle with γ = 103,
the radiated photons are in the soft x-ray range 2 to 40 keV. The γ
dependence of the emitted energy thus comes from the hardening of
the spectrum rather than from an increased quantum yield.
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Figure 1.25: X-ray photon energy spectra for a radiator
consisting of 200 25µm thick foils of Mylar with 1.5 mm spacing
in air (solid lines) and for a single surface (dashed line). Curves
are shown with and without absorption. Adapted from Ref. 85.

The number of photons with energy ~ω > ~ω0 is given by the
answer to problem 13.15 in Ref. 34,

Nγ (~ω > ~ω0) =
αz2

π

[

(

ln
γ~ωp

~ω0
− 1

)2

+
π2

12

]

, (1.47)

within corrections of order (~ω0/γ~ωp)
2. The number of photons

above a fixed energy ~ω0 ≪ γ~ωp thus grows as (ln γ)2, but the number
above a fixed fraction of γ~ωp (as in the example above) is constant.

For example, for ~ω > γ~ωp/10, Nγ = 2.519 αz2/π = 0.59%× z2.
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The particle stays “in phase” with the x ray over a distance called
the formation length, d(ω). Most of the radiation is produced in a
distance d(ω) = (2c/ω)(1/γ2 + θ2 + ω2

p/ω2)−1. Here θ is the x-ray

emission angle, characteristically 1/γ. For θ = 1/γ the formation

length has a maximum at d(γωp/
√

2) = γc/
√

2 ωp. In practical
situations it is tens of µm.

Since the useful x-ray yield from a single interface is low, in practical
detectors it is enhanced by using a stack of N foil radiators—foils L
thick, where L is typically several formation lengths—separated by
gas-filled gaps. The amplitudes at successive interfaces interfere to
cause oscillations about the single-interface spectrum. At increasing
frequencies above the position of the last interference maximum
(L/d(w) = π/2), the formation zones, which have opposite phase,
overlap more and more and the spectrum saturates, dI/dω approaching
zero as L/d(ω) → 0. This is illustrated in Fig. 1.25 for a realistic
detector configuration.

For regular spacing of the layers fairly complicated analytic
solutions for the intensity have been obtained [85]. (See also Ref. 86
and references therein.) Although one might expect the intensity of
coherent radiation from the stack of foils to be proportional to N2,
the angular dependence of the formation length conspires to make the
intensity ∝ N .

Further discussion and all references may be found in the full
Review of Particle Physics; the equation and reference numbering
corresponds to that version.

July 31, 2012 18:11


